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INTRODUCTION 

Klebsiella oxytoca is a gram-negative, encapsulated, 

rod-shaped bacterium belonging to the 

Enterobacteriaceae family, closely related to 

Klebsiella pneumoniae but distinguished by its 

unique pathogenic traits and clinical relevance [1]. 

Long regarded as a less prominent pathogen 

compared to its notorious counterpart, K. oxytoca 

has gained recognition as an opportunistic organism 

capable of causing a diverse array of infections, 

particularly in healthcare settings [2]. It is 

ubiquitous in nature, thriving in environmental 

niches such as soil, water, and plant surfaces, while 

also colonizing human mucosal surfaces, including 

the gastrointestinal tract, nasopharynx, and skin, 

where it typically resides as a commensal [3]. 

However, under conditions such as 

immunosuppression, disruption of the normal 

microbiota by antibiotics, or breaches in host 

barriers due to medical interventions, K. oxytoca 

can shift from a benign colonizer to a significant 

pathogen, contributing to both nosocomial and, to a 

lesser extent, community-acquired infections [4]. 

The pathogenicity of K. oxytoca is driven by an 

array of virulence factors that enable it to evade 

immune responses and inflict damage on host 

tissues. Its polysaccharide capsule, a hallmark of the 

genus, forms a protective shield that prevents 

phagocytosis by neutrophils and macrophages and 

inhibits complement-mediated lysis, allowing the 

bacterium to persist in hostile environments such as 

the bloodstream or tissues [5]. Additionally, K. 
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oxytoca produces siderophores small, iron-chelating 

molecules that scavenge essential iron from host 

proteins like transferrin and lactoferrin, supporting 

bacterial proliferation during infection [6]. In 

contrast to K. pneumoniae, which is often 

associated with hypervirulent strains causing severe 

community-acquired diseases like necrotizing 

pneumonia and liver abscesses, K. oxytoca is more 

frequently linked to healthcare-associated infections 

and a distinctive syndrome known as antibiotic-

associated hemorrhagic colitis (AAHC) [7]. This 

condition, triggered by the production of cytotoxins 

such as tilivalline and tilimycin, typically emerges 

following the use of β-lactam antibiotics, which 

disrupt gut flora and favor K. oxytoca overgrowth 

[8]. 

Clinically, K. oxytoca poses a significant threat to 

vulnerable populations, including neonates, the 

elderly, and immunocompromised individuals, such 

as those with cancer, diabetes, or HIV [9]. 

Nosocomial infections are common, encompassing 

urinary tract infections (UTIs), pneumonia, 

bacteremia, and wound infections, often associated 

with indwelling medical devices like catheters, 

ventilators, and surgical implants [10]. The 

bacterium's ability to form biofilms on these 

surfaces enhances its persistence, making 

eradication challenging and increasing the risk of 

chronic or recurrent infections [11]. Furthermore, 

the emergence of multidrug-resistant (MDR) strains 

has amplified its clinical importance, with 

resistance to a broad spectrum of antibiotics 

including β-lactams, carbapenems, 

fluoroquinolones, and aminoglycosides posing 

substantial therapeutic obstacles [12]. This 

resistance profile is mediated by both intrinsic 

mechanisms, such as the chromosomally encoded 

OXY β-lactamase, and acquired genetic elements, 

including plasmid-borne extended-spectrum β-

lactamases (ESBLs) and carbapenemases like KPC 

and NDM [13]. 

Epidemiologically, K. oxytoca is predominantly a 

healthcare-associated pathogen, with key risk 

factors including prolonged hospitalization, 

invasive procedures, and prior antibiotic exposure, 

all of which create opportunities for colonization 

and infection [14]. Outbreaks, particularly in 

neonatal intensive care units (NICUs), have been 

documented, often linked to contaminated medical 

equipment, solutions, or healthcare worker 

transmission, highlighting its epidemic potential 

[15]. While community-acquired infections are less 

common, they are increasingly reported in 

individuals with underlying conditions such as 

diabetes, chronic alcoholism, or liver disease, 

suggesting that K. oxytoca may have a broader 

ecological and clinical footprint than previously 

recognized [16]. The global rise of MDR strains, 

especially in regions with high antibiotic 

consumption, underscores the need for enhanced 

surveillance and infection control measures [17]. 

The management of K. oxytoca infections is 

complicated by its resistance patterns, requiring 

precise diagnostic and therapeutic approaches. 

Diagnosis typically involves culture-based methods 

supplemented by biochemical tests and molecular 

techniques, such as PCR, to detect resistance genes, 

though rapid identification remains a priority for 

improving outcomes [18]. Treatment options vary 

from third-generation cephalosporins for 

susceptible strains to advanced regimens involving 

carbapenems, colistin, or newer agents like 

ceftazidime-avibactam for MDR isolates, often 

guided by susceptibility testing [19]. Genetic 

studies have provided critical insights into K. 

oxytoca's adaptability, with whole-genome 

sequencing revealing a diverse array of virulence 

and resistance genes that reflect its evolutionary 

plasticity [20]. These findings emphasize the 

bacterium's ability to thrive under selective 

pressures, such as antibiotic use, and its potential to 

evolve new pathogenic traits. 

This review aims to deliver a comprehensive 

analysis of K. oxytoca's role in human diseases, 

synthesizing its pathogenicity, clinical 

manifestations, resistance mechanisms, 

epidemiology, and genetic characteristics. By 

exploring its virulence factors capsule protection, 

toxin production, iron acquisition, and biofilm 

formation—this article elucidates the mechanisms 

driving its emergence as a significant pathogen. The 

clinical and epidemiological implications are 

examined in detail, alongside diagnostic and 

therapeutic challenges. Additionally, the review 

looks forward to future research directions, 

including genomic approaches to uncover novel 

virulence determinants and the development of 

innovative interventions to mitigate its impact. 

PATHOGENICITY AND VIRULENCE 

FACTORS 

The pathogenicity of Klebsiella oxytoca is rooted in 

a multifaceted array of virulence factors that 

collectively enable it to colonize host tissues, evade 

immune defenses, and cause disease. At the core of 

its virulence is the polysaccharide capsule, a thick, 

carbohydrate-based structure surrounding the 
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bacterial cell, composed of K-antigens that vary 

across strains [5]. This capsule serves as a physical 

barrier, preventing phagocytosis by host immune 

cells such as neutrophils and macrophages and 

blocking complement-mediated killing, a trait 

critical for survival during systemic infections like 

bacteremia [21]. Research has shown that the 

capsule's antiphagocytic properties are essential for 

K. oxytoca's persistence in the host, distinguishing it 

from other gram-negative pathogens with less 

robust encapsulation [22]. 

Iron acquisition is another pivotal virulence 

mechanism, mediated by siderophores—small, 

high-affinity iron-chelating compounds like 

enterobactin—that extract ferric iron from host 

proteins such as transferrin and hemoglobin [6]. 

Iron is a limiting nutrient in the host environment, 

and K. oxytoca's ability to scavenge it supports 

bacterial growth and proliferation, particularly in 

iron-restricted niches like abscesses or the 

bloodstream [23]. The regulation of siderophore 

production is tightly controlled by the Fur (ferric 

uptake regulator) system, which responds to 

environmental iron levels, enhancing the 

bacterium's adaptability across diverse conditions 

[24]. This iron piracy is a key factor in its 

competitiveness against host defenses and other 

microbiota. 

A distinguishing feature of K. oxytoca's 

pathogenicity is its production of cytotoxins, 

notably tilivalline and tilimycin, which are 

implicated in antibiotic-associated hemorrhagic 

colitis (AAHC) [8]. These nonribosomal peptide 

toxins, synthesized by specific biosynthetic gene 

clusters, target intestinal epithelial cells, disrupting 

tight junctions, inducing apoptosis, and causing 

mucosal damage [25]. This leads to inflammation, 

hemorrhage, and the characteristic bloody diarrhea 

observed in AAHC, particularly following 

penicillin-based antibiotic therapy, which 

selectively enriches K. oxytoca in the gut by 

eliminating competing flora [26]. Experimental 

studies using cell culture and animal models have 

confirmed that toxin-producing strains exhibit 

significantly greater virulence in the gastrointestinal 

tract compared to non-toxigenic isolates, 

underscoring the toxins' role in disease severity 

[27]. 

Adhesion to host surfaces is facilitated by adhesins 

and pili, including type 1 and type 3 fimbriae, 

which enable K. oxytoca to bind to mucosal 

epithelia and abiotic surfaces like catheters and 

ventilators [28]. This adhesion is a prerequisite for 

biofilm formation—a structured bacterial 

community encased in an extracellular matrix that 

enhances resistance to antibiotics, immune 

clearance, and environmental stresses [11]. Biofilms 

are particularly problematic in nosocomial 

infections, contributing to chronicity and device-

related complications, with genomic analyses 

identifying fimbrial genes as key mediators of this 

process [29]. The ability to form biofilms 

distinguishes K. oxytoca as a tenacious pathogen in 

clinical settings, where it can persist despite 

aggressive interventions. 

Lipopolysaccharide (LPS), a major component of 

the gram-negative outer membrane, further 

amplifies K. oxytoca's virulence by eliciting a 

potent inflammatory response through Toll-like 

receptor 4 (TLR4) activation [30]. The lipid A 

portion of LPS acts as an endotoxin, triggering the 

release of pro-inflammatory cytokines such as 

tumor necrosis factor-alpha (TNF-α) and 

interleukin-6 (IL-6), which can exacerbate tissue 

damage and, in severe cases, precipitate septic 

shock [31]. While structurally similar to LPS in 

other Enterobacteriaceae, K. oxytoca's specific O-

antigen composition may modulate the intensity of 

the host immune response, potentially influencing 

infection outcomes [32]. This inflammatory cascade 

is a double-edged sword, aiding bacterial clearance 

in some contexts while worsening pathology in 

others. 

The synergy among these virulence factors—

capsule protection, iron acquisition, toxin 

production, adhesion, and LPS-mediated 

inflammation—enables K. oxytoca to exploit host 

vulnerabilities, particularly in immunocompromised 

or antibiotic-treated individuals [33]. Unlike K. 

pneumoniae, which often exhibits hypervirulence in 

healthy hosts, K. oxytoca's opportunistic nature is 

tailored to specific clinical niches, such as the gut 

during AAHC or device surfaces in nosocomial 
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infections [7]. Its metabolic versatility, including 

the ability to ferment a wide range of sugars, further 

supports its survival across diverse environments, 

from the human body to external reservoirs [34]. 

Understanding the regulation of these virulence 

traits through transcriptomic or proteomic 

approaches could reveal novel therapeutic targets, 

offering hope for disarming this adaptable pathogen 

[35] [Table 1]. 

Table 1: The key virulence factors of Klebsiella oxytoca and their associated roles in pathogenicity: 

Virulence Factor Description Role in Pathogenicity 

Polysaccharide Capsule A thick carbohydrate-based 

structure composed of K-

antigens. 

Prevents phagocytosis, blocks 

complement-mediated killing, essential for 

survival in systemic infections. 

Iron Acquisition 

(Siderophores) 

Small, high-affinity iron-

chelating compounds like 

enterobactin. 

Scavenges iron from host proteins, 

supporting bacterial growth, particularly in 

iron-limited environments. 

Cytotoxins (Tilivalline, 

Tilimycin) 

Nonribosomal peptide toxins 

synthesized by specific 

biosynthetic gene clusters. 

Disrupts intestinal epithelial cells, causes 

mucosal damage, hemorrhage, and bloody 

diarrhea in AAHC. 

Adhesins & Pili (Type 1, 

Type 3 Fimbriae) 

Surface structures that enable 

attachment to host tissues and 

abiotic surfaces. 

Facilitate adhesion to mucosal epithelia 

and biofilm formation, important for 

chronic and device-related infections. 

Lipopolysaccharide (LPS) A major component of the outer 

membrane that includes lipid A 

and O-antigen. 

Triggers inflammatory responses, can lead 

to septic shock, amplifies virulence via 

TLR4 activation. 

Biofilm Formation A structured bacterial 

community encased in an 

extracellular matrix. 

Enhances resistance to antibiotics and 

immune clearance, critical in nosocomial 

infections. 

CLINICAL MANIFESTATIONS 

Klebsiella oxytoca is implicated in a broad spectrum 

of clinical diseases, ranging from localized 

infections to systemic, life-threatening conditions, 

predominantly in healthcare settings [2]. Its role as 

an opportunistic pathogen is most pronounced in 

immunocompromised individuals, neonates, and 

patients with indwelling medical devices, where it 

exploits breaches in host defenses to establish 

infection [9]. Below, we detail the primary clinical 

manifestations associated with K. oxytoca, 

supported by clinical and microbiological evidence. 

Urinary Tract Infections (UTIs): K. oxytoca is a 

significant cause of UTIs, particularly in 

catheterized patients or those with structural 

abnormalities of the urinary tract [36]. Its ability to 

adhere to uroepithelial cells and form biofilms on 

catheters enhances its persistence, leading to 

recurrent or chronic infections [11]. Symptoms 

typically include dysuria, frequency, and suprapubic 

pain, though in immunocompromised or elderly 

patients, UTIs may progress to pyelonephritis or 

bacteremia [37]. Studies estimate that K. oxytoca 

accounts for approximately 5-10% of nosocomial 

UTIs, with higher rates in long-term care facilities 

[38]. 

Pneumonia: Although less common than K. 

pneumoniae-induced pneumonia, K. oxytoca can 

cause severe, necrotizing lung infections, especially 

in mechanically ventilated patients in ICUs [39]. 

These infections are characterized by hemoptysis, 

fever, and rapid progression to lung abscesses or 

empyema, reflecting the bacterium's destructive 

potential [40]. Risk factors include prolonged 

ventilation, aspiration, and prior antibiotic 

exposure, which select for K. oxytoca over 

commensal flora [41]. The mortality rate for K. 

oxytoca pneumonia can exceed 50% in critically ill 

patients, underscoring its clinical severity [42]. 

Antibiotic-Associated Hemorrhagic Colitis 

(AAHC): One of the most distinctive syndromes 

linked to K. oxytoca is AAHC, a form of colitis that 

typically follows treatment with β-lactam 

antibiotics, such as amoxicillin [8]. The condition is 

driven by the bacterium's production of cytotoxins 

(tilivalline and tilimycin), which damage the 

colonic mucosa, leading to bloody diarrhea, 

abdominal pain, and mucosal hemorrhage [25]. 
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Endoscopic findings often reveal segmental colitis 

with erythematous and ulcerative lesions, 

predominantly in the right colon [43]. AAHC is 

self-limiting upon cessation of the offending 

antibiotic, but severe cases may require supportive 

care or, rarely, surgical intervention [44]. 

Bacteremia and Sepsis: In immunocompromised 

patients, such as those with malignancy, diabetes, or 

neutropenia, K. oxytoca can invade the bloodstream, 

resulting in bacteremia and sepsis [45]. Sources of 

infection include the gastrointestinal tract, urinary 

tract, or indwelling devices, with the bacterium's 

capsule and LPS contributing to systemic 

dissemination and inflammatory cascades [5, 30]. 

Clinical features include fever, hypotension, and 

multi-organ dysfunction, with mortality rates 

approaching 30-40% in MDR cases [46]. Prompt 

identification and treatment are critical to 

improving outcomes [47]. 

Wound Infections and Abscesses: K. oxytoca is 

frequently isolated from surgical site infections, 

traumatic wounds, and soft tissue abscesses, often 

as part of a polymicrobial flora [48]. Its biofilm-

forming capacity and resistance to host defenses 

enable it to persist in necrotic tissue, leading to 

delayed wound healing and chronic suppuration 

[11]. In neonates, K. oxytoca has been implicated in 

necrotizing enterocolitis (NEC), a devastating 

condition characterized by intestinal inflammation 

and necrosis, though its role remains secondary to 

other pathogens [49]. 

The clinical diversity of K. oxytoca infections poses 

diagnostic challenges, as symptoms may overlap 

with those caused by other pathogens [50]. For 

instance, distinguishing K. oxytoca pneumonia from 

that caused by K. pneumoniae requires 

microbiological confirmation, given their shared 

genus but differing virulence profiles [51]. 

Furthermore, the bacterium's role in polymicrobial 

infections complicates attribution of disease, 

necessitating advanced diagnostic tools like 

MALDI-TOF MS to ensure accurate identification 

[52]. Patient-specific factors, such as immune status 

and prior antibiotic exposure, significantly 

influence the clinical course, highlighting the need 

for personalized management strategies [53]. 

MECHANISMS OF ANTIBIOTIC 

RESISTANCE 

The emergence of multidrug-resistant (MDR) 

Klebsiella oxytoca strains has significantly 

complicated its clinical management, rendering 

many standard antibiotic therapies ineffective [12]. 

The bacterium's resistance mechanisms are a 

combination of intrinsic chromosomal traits and 

acquired genetic elements, enabling it to withstand 

a broad range of antimicrobial agents [13]. 

Mechanisms explore in detail, supported by 

molecular and clinical studies shower in [Table 2]. 

Table 2: Mechanisms of Antibiotic Resistance in Klebsiella oxytoca 

Resistance 

Mechanism 

Description Key 

Genes/Proteins 

Clinical Impact 

Intrinsic OXY β-

Lactamases 

Chromosomally encoded 

enzymes hydrolyzing 

penicillins and first-generation 

cephalosporins. 

blaOXY (OXY-1 

to OXY-6) 

Reduces efficacy of 

ampicillin, piperacillin, 

and first-generation 

cephalosporins. 

Extended-Spectrum 

β-Lactamases 

(ESBLs) 

Plasmid-mediated enzymes 

that hydrolyze third- and 

fourth-generation 

cephalosporins. 

blaCTX-M, 

blaTEM, blaSHV 

Resistance to ceftazidime, 

cefepime; requires 

carbapenems for treatment. 

Carbapenemases Enzymes breaking down 

carbapenems and most β-

lactams, leading to MDR 

KPC, NDM, 

OXA-48 

High resistance to 

carbapenems (imipenem, 

meropenem); limited 
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strains. treatment options. 

Efflux Pumps Actively expel antibiotics from 

the bacterial cell, reducing 

intracellular drug 

concentration. 

AcrAB-TolC Decreases susceptibility to 

fluoroquinolones, 

tetracyclines, and some β-

lactams. 

Porin Loss Mutations/downregulation of 

outer membrane proteins 

limiting antibiotic entry. 

OmpK35, 

OmpK36 

Synergizes with β-

lactamases to enhance 

carbapenem resistance. 

Biofilm Formation Protective bacterial 

communities that reduce 

antibiotic penetration and 

enhance gene transfer. 

Various biofilm-

associated genes 

Increases persistence in 

chronic infections (e.g., 

catheter-associated UTIs, 

pneumonia). 

Combination 

Resistance 

Mechanisms 

Multiple mechanisms working 

together, compounding 

antibiotic resistance. 

Various 

combinations 

Requires combination 

therapies; complicates 

treatment strategies. 

Intrinsic Resistance via OXY β-Lactamases: K. 

oxytoca naturally produces a chromosomally 

encoded β-lactamase, known as the OXY enzyme, 

which hydrolyzes penicillins and confers intrinsic 

resistance to drugs like ampicillin and piperacillin 

[54]. The OXY family includes multiple variants 

(e.g., OXY-1 to OXY-6), each with differing 

substrate specificities and expression levels, 

influenced by regulatory mutations in the blaOXY 

promoter region [55]. Overexpression of OXY 

enzymes can also reduce susceptibility to first-

generation cephalosporins, posing challenges in 

empiric therapy [56]. 

Extended-Spectrum β-Lactamases (ESBLs): The 

acquisition of plasmid-mediated ESBLs has 

expanded K. oxytoca's resistance to third- and 

fourth-generation cephalosporins, such as 

ceftazidime and cefepime [57]. Common ESBL 

genes include blaCTX-M, blaTEM, and blaSHV 

variants, which are often co-transferred with 

resistance determinants for aminoglycosides and 

fluoroquinolones [58]. ESBL-producing K. oxytoca 

strains are increasingly reported in nosocomial 

outbreaks, necessitating the use of carbapenems as a 

last resort [59]. 

Carbapenemases: The rise of carbapenem-resistant 

K. oxytoca is driven by the production of 

carbapenemases, such as KPC, NDM, and OXA-48-

like enzymes [60]. These metallo- or serine-based 

enzymes hydrolyze carbapenems (e.g., imipenem, 

meropenem) and most other β-lactams, leaving few 

treatment options [61]. Plasmid-mediated spread of 

carbapenemase genes, often alongside ESBLs, 

amplifies the MDR phenotype, with global 

dissemination documented in healthcare settings 

[62]. 

Efflux Pumps and Porin Loss: Beyond enzymatic 

resistance, K. oxytoca employs efflux pumps, such 

as AcrAB-TolC, to expel fluoroquinolones, 

tetracyclines, and some β-lactams, reducing 

intracellular drug concentrations [63]. Mutations or 

downregulation of outer membrane porins (e.g., 

OmpK35 and OmpK36) further limit antibiotic 

entry, particularly for carbapenems, synergizing 

with β-lactamases to enhance resistance [64]. These 

non-enzymatic mechanisms are often 

underappreciated but critical in MDR strains [65]. 

Biofilm Formation: The ability to form biofilms on 

medical devices and mucosal surfaces provides a 

physical barrier against antibiotics, reducing their 

penetration and efficacy [11]. Biofilms also 

facilitate horizontal gene transfer, accelerating the 

spread of resistance plasmids among bacterial 

populations [66]. This phenomenon is particularly 

relevant in chronic infections, such as catheter-

associated UTIs or ventilator-associated pneumonia 

[67]. 
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The complexity of K. oxytoca's resistance 

mechanisms requires a multifaceted approach to 

treatment. For instance, combination therapies 

targeting both enzymatic and non-enzymatic 

resistance (e.g., β-lactamase inhibitors with efflux 

pump inhibitors) are under investigation to restore 

antibiotic efficacy [68]. Additionally, the rapid 

evolution of resistance, driven by selective pressure 

from antibiotic overuse, underscores the need for 

stewardship programs to limit the emergence of 

MDR strains [69]. Surveillance of resistance 

patterns at local and global levels is essential to 

guide empirical therapy and predict therapeutic 

outcomes [70]. 

EPIDEMIOLOGY AND RISK FACTORS 

Klebsiella oxytoca infections are predominantly 

healthcare-associated, reflecting its status as a 

nosocomial pathogen, though community-acquired 

cases are increasingly recognized [14]. 

Understanding its epidemiology and associated risk 

factors is crucial for prevention and control, 

particularly in high-risk settings. Below, we 

examine these aspects in detail, supported by 

epidemiological data. 

Nosocomial Prevalence: K. oxytoca is a frequent 

colonizer of hospital environments, thriving in 

moist areas such as sinks, ventilators, and catheters 

[71]. It accounts for approximately 5-10% of gram-

negative infections in ICUs and long-term care 

facilities, with higher incidence in neonates and the 

elderly [72]. Outbreaks are well-documented, 

particularly in neonatal ICUs, where contaminated 

solutions, equipment, or healthcare worker hands 

serve as transmission vectors [15]. A notable 

outbreak in a German hospital traced K. oxytoca to 

contaminated disinfectant, highlighting its 

environmental resilience [73]. 

Risk Factors: Key risk factors for K. oxytoca 

infection include prolonged hospitalization, 

invasive procedures (e.g., catheterization, 

mechanical ventilation), and prior antibiotic use, 

particularly β-lactams, which disrupt normal 

microbiota and select for resistant strains [74]. 

Immunocompromised states—such as malignancy, 

diabetes, or HIV—heighten susceptibility, as do 

extremes of age (neonates and the elderly) [9]. In 

AAHC, penicillin exposure is a specific trigger, 

enriching toxin-producing K. oxytoca in the gut [8]. 

Community-Acquired Infections: While less 

common, community-acquired K. oxytoca 

infections occur, typically in individuals with 

underlying conditions like chronic alcoholism, 

diabetes, or liver disease [16]. These cases often 

present as UTIs or bacteremia, with a lower 

prevalence of MDR strains compared to nosocomial 

isolates [75]. Environmental exposure (e.g., soil or 

water) may play a role, though human-to-human 

transmission is rare outside healthcare settings [3]. 

Geographic Variation: The prevalence of MDR K. 

oxytoca varies globally, with higher rates of ESBL 

and carbapenemase-producing strains in Asia, 

Southern Europe, and parts of North America, 

driven by antibiotic overuse and poor infection 

control [76]. Surveillance data indicate a rising 

trend, necessitating region-specific strategies [17]. 

Transmission Dynamics: In healthcare settings, K. 

oxytoca spreads via direct contact, contaminated 

surfaces, or aerosols from respiratory devices [77]. 

Its ability to persist in biofilms enhances its 

tenacity, making eradication challenging [11]. 

Community transmission, though less studied, may 

involve fecal-oral routes or environmental 

reservoirs, warranting further investigation to 

clarify its ecological niche [78]. Preventive 

measures, including hand hygiene, device 

sterilization, and isolation protocols, are critical to 

interrupt these pathways [79]. 

DIAGNOSIS AND TREATMENT 

Accurate diagnosis and effective treatment of K. 

oxytoca infections are critical yet challenging due to 

its diverse clinical presentations and resistance 

profile [18]. Below, we outline current approaches, 

supported by clinical and laboratory evidence. 

Diagnosis: Identification of K. oxytoca begins with 

culture-based methods, isolating the bacterium from 

clinical specimens (e.g., urine, blood, sputum) on 

selective media like MacConkey agar, where it 

appears as lactose-fermenting colonies [80]. 

Biochemical tests, such as indole positivity and 

citrate utilization, distinguish it from K. 
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pneumoniae [81]. Automated systems (e.g., 

VITEK) and MALDI-TOF MS provide rapid, 

accurate speciation [52]. Molecular techniques, 

including PCR targeting blaOXY or ESBL genes, 

are increasingly used to detect resistance 

determinants, particularly in MDR cases [82]. In 

AAHC, toxin detection via cell culture assays or 

PCR for biosynthetic genes (e.g., npsA/B) confirms 

K. oxytoca's role [27]. 

Treatment: Therapy is guided by susceptibility 

testing due to widespread resistance [19]. For 

susceptible strains, third-generation cephalosporins 

(e.g., cefotaxime) or fluoroquinolones (e.g., 

ciprofloxacin) are effective, though OXY β-

lactamases limit penicillin use [83]. ESBL-

producing strains require carbapenems (e.g., 

meropenem), while carbapenemase producers may 

respond to colistin, tigecycline, or newer agents like 

ceftazidime-avibactam, often in combination [84]. 

AAHC typically resolves with antibiotic 

withdrawal, though severe cases may need 

supportive care [44]. Biofilm-associated infections 

often necessitate device removal alongside 

antibiotics [85]. 

Challenges and Innovations: Diagnostic delays due 

to slow culture methods and resistance complexity 

necessitate faster tools, such as next-generation 

sequencing for real-time resistome profiling [86]. 

Treatment failures in MDR cases highlight the need 

for novel agents, including β-lactamase inhibitors or 

phage therapy, currently in preclinical stages [87]. 

Patient-specific factors, like renal function or 

comorbidities, further complicate dosing and drug 

selection, emphasizing individualized care [88]. 

GENETIC STUDIES OF KLEBSIELLA 

OXYTOCA 

Genomic analyses have illuminated the molecular 

basis of K. oxytoca's pathogenicity and resistance, 

revealing a dynamic genetic landscape [20]. The 

complete genome sequence of K. oxytoca KCTC 

1686 identified approximately 5.5 million base pairs 

encoding over 5,000 genes, including those for 

capsule biosynthesis, siderophore production, and 

toxin synthesis [89]. The polysaccharide capsule, a 

primary virulence factor, is regulated by the cps 

gene cluster, which exhibits variability across 

strains, influencing antigenic diversity and immune 

evasion [90]. 

The chromosomally encoded OXY β-lactamase 

gene family (blaOXY-1 to OXY-6) is a hallmark of 

K. oxytoca, with mutations in promoter regions 

driving overexpression and resistance to penicillins 

and cephalosporins [55]. Plasmid-mediated 

resistance genes, such as blaCTX-M, blaKPC, and 

blaNDM, are frequently detected in clinical isolates, 

often co-located with aminoglycoside and 

fluoroquinolone resistance determinants, reflecting 

extensive horizontal gene transfer [91]. The toxin 

genes npsA and npsB, responsible for tilivalline and 

tilimycin production, are plasmid-borne in some 

strains, linking toxinogenesis to mobile genetic 

elements [92]. 

Comparative genomics with K. pneumoniae 

highlights K. oxytoca's distinct evolutionary path, 

with fewer hypervirulence genes but a robust 

capacity for environmental adaptation and biofilm 

formation [93]. Whole-genome sequencing of 

outbreak strains has traced transmission routes and 

resistance spread, aiding infection control [94]. 

Population genomics studies suggest that K. 

oxytoca's genetic diversity is shaped by niche-

specific selective pressures, with hospital-adapted 

clones emerging as dominant lineages [95]. These 

insights pave the way for precision medicine 

approaches targeting strain-specific vulnerabilities 

[96]. 

FUTURE STUDIES AND PERSPECTIVES 

Future research on K. oxytoca should focus on 

large-scale genomic sequencing to uncover novel 

virulence and resistance genes, leveraging tools like 

next-generation sequencing and CRISPR-based 

editing to dissect pathogenicity mechanisms [97]. 

Developing rapid diagnostics, such as point-of-care 

PCR for blaOXY or toxin genes, could enhance 

early detection of MDR or toxigenic strains [98]. 

Therapeutic innovation is critical, with 

bacteriophage therapy, anti-toxin molecules, and 

biofilm-disrupting agents offering promise against 

resistant infections [99]. 

Vaccine development targeting capsule antigens or 

siderophores could prevent colonization in high-risk 
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groups [100], while synthetic biology approaches 

might engineer probiotics to outcompete K. oxytoca 

in the gut [101]. Enhanced global surveillance, 

integrating genomic and epidemiological data, is 

essential to track MDR clones and inform public 

health policies. Interdisciplinary collaboration—

spanning microbiology, bioinformatics, and clinical 

research—will be key to translating these advances 

into practical solutions [102]. 

CONCLUSION 

Klebsiella oxytoca is an opportunistic pathogen 

with a multifaceted role in human diseases, driven 

by its virulence factors, clinical diversity, and 

resistance mechanisms. Its genetic adaptability and 

epidemiological spread necessitate advanced 

diagnostics, tailored treatments, and forward-

looking research to address this emerging threat. By 

integrating clinical, microbiological, and genetic 

perspectives, this review highlights the urgent need 

for enhanced surveillance and innovative strategies 

to mitigate the growing impact of K. oxytoca in 

modern medicine. Future efforts should prioritize 

rapid diagnostics, novel therapeutics, and 

preventive measures to curb the spread of MDR 

strains in both healthcare and community settings. 
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