

Sensory Indicators and the Hypothesis of Microbial Consciousness: An Updated Review

Ali Abedulameer Alhusayni *¹, Falah Hasan Obayes AL-Khikani ^{1,2}

¹ Department of Microbiology, Al-Shomali General Hospital, Babylon Health Directorate, Babylon, Iraq

² Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq.

ABSTRACT:

The traditional view of bacteria as simple, autonomous entities is being challenged by the discovery of complex, coordinated behaviors that suggest a form of collective intelligence. This review explores the biological evidence supporting the microbial consciousness hypothesis, which posits that cognitive-like functions may be an intrinsic property of all living cells. We focus on sophisticated sensory indicators and information processing mechanisms that enable bacteria to make adaptive, history-dependent decisions. The review first examines Quorum Sensing (QS), the primary sensory indicator that allows bacteria to gauge population density (colony count) via auto inducers, facilitating collective decision-making such as the synchronized production of virulence factors and biofilm formation. Beyond QS, we detail evidence for Cellular and Generational Memory, including short-term metabolic memory and heritable memory passed to offspring, which allows for faster adaptation to fluctuating environments. Furthermore, we analyze the capacity for Complex Information Integration and Learning, highlighting how sophisticated Signal Transduction networks integrate multiple sensory inputs, and how single-celled organisms demonstrate the simplest form of learning, habituation. These cognitive like capabilities density sensing, memory, and learning provide the foundation for the Cellular Basis of Consciousness (CBC) framework. While the term "consciousness" remains debated, the study of these microbial sensory indicators offers a crucial, bottom-up perspective on the origins of intelligence and awareness, confirming that bacteria are highly complex, social, and adaptive organisms.

Keywords:

Microbial Consciousness,, sensory indicators, Quorum Sensing, Cellular Basis of Consciousness

Article history:

Received: 22 June 2025.

Revised: 17 August 2025.

Accepted: 25 August 2025.

Published: 26 Dec. 2025.

This is an open access article under the CC BY 4.0 license
<https://creativecommons.org/licenses/by/4.0/>

* Corresponding author: Ali Abedulameer Alhusayni
E-mail address:
alti99269@gmail.com

INTRODUCTION

Over recent decades, advances in microbiology and systems biology have revealed that bacteria possess highly developed sensory and regulatory systems that continuously monitor both internal states and external environmental cues. Bacterial cells are capable of detecting nutrient availability, chemical gradients, population density, physical stressors, and host-derived signals through specialized sensory pathways. These signals are processed via intricate signal transduction networks that regulate gene expression, metabolic activity, and collective

behaviors in a context-dependent manner. Such adaptive responsiveness highlights information processing as a fundamental property of microbial life and challenges reductionist interpretations that deny unicellular organisms any form of cognition [1].

Within this framework, the concept of microbial consciousness does not imply subjective awareness comparable to that of higher organisms, but rather denotes a minimal, functional form of cognition rooted in sensation, integration, memory, and

adaptive decision-making. Processes such as quorum sensing, cellular and generational memory, and learning-like behaviors provide experimentally observable indicators of this primitive cognition. Examining these sensory indicators from a bottom-up biological perspective offers valuable insight into the cellular origins of intelligence and awareness, supporting the view that cognitive-like properties may emerge naturally from fundamental biological processes present even at the level of single cells [2].

The skin, as the body's largest organ, acts as a the traditional view of bacteria as simple, autonomous entities has been profoundly challenged by the discovery of complex, coordinated behaviors that suggest a form of collective intelligence. This shift has led to the emergence of the Microbial Consciousness hypothesis, which posits that the capacity for awareness and cognitive-like functions may be an intrinsic property of all living cells [2]. This review delves into the biological evidence supporting this hypothesis, focusing on the sophisticated sensory indicators that enable bacteria to process information.

QUORUM SENSING: THE PRIMARY SENSORY INDICATOR OF COLONY COUNT

Quorum Sensing (QS) is the foundational mechanism that allows bacteria to function as a collective, acting as the primary sensory indicator for population density (or "colony count") [3].

QS relies on the production and detection of small signaling molecules called Autoinducers (AIs). The concentration of AIs in the environment is directly proportional to the number of cells. When the AI concentration reaches a critical threshold, it triggers a synchronized change in gene expression across the entire population [3]. This ability to "count" the surrounding population allows the bacteria to activate energetically costly behaviors only when their collective impact is maximized [Table 1].

To development of multi-epitope vaccines; the QS system facilitates collective decision-making, a hallmark of intelligence. For instance, pathogenic bacteria use QS to delay the production of virulence factors until their numbers are sufficient to

overwhelm the host's immune system [3]. Similarly, the formation of biofilms, which provide a protected, matrix-embedded community, is a coordinated, density-dependent decision that demonstrates a collective problem-solving capacity [4].

Table 1: Quorum sensing in different bacteria.

Bacterial Type	Autoinducer (AI)	Sensing Mechanism	Coordinated Cognitive-like Behavior
Gram-Negative	Acyl-Homoserine Lactones (AHLs)	Cytoplasmic receptor binding (e.g., LuxR)	Bioluminescence, Virulence factor production, Biofilm formation [3]
Gram-Positive	Autoinducing Peptides (AIPs)	Two-component histidine kinase receptors	Virulence regulation (e.g., Agr system), Competence [3]

BEYOND QS: CELLULAR MEMORY AND INFORMATION PROCESSING

The hypothesis of microbial consciousness is further supported by evidence of complex information processing capabilities that extend beyond simple density sensing, including forms of cellular memory and learning.

A. Cellular and Generational Memory

Memory, the ability to adjust current behavior based on past experience, is a key cognitive function. Bacteria exhibit several forms of memory that are non-neural but functionally analogous to memory in higher organisms [5]:

1. Short-Term Metabolic Memory: The persistence of certain proteins or metabolites after an environmental stimulus is removed can bias the cell's response to future, similar stimuli. This acts as a transient, short-term memory [5].

2. Generational Memory: Studies have shown that bacteria can pass down a memory of past environmental conditions, such as iron availability or swarming experience, to their offspring for several generations. This heritable memory enables faster, adaptive decision-making in fluctuating

environments [6].

3. Collective/Externalized Memory: In complex communities like biofilms, memory can be an emergent property of the collective. The community can remember past mechanical or chemical stresses through persistent changes in the extracellular matrix or the environment itself, influencing the behavior of new cells [7]. It is crucial for therapeutic applications.

B. Complex information integration and learning

Bacteria's Signal Transduction (ST) networks are highly sophisticated, allowing them to integrate multiple sensory inputs (chemical, physical, thermal) to make complex, history-dependent decisions [1]. This capacity for information integration is seen as a fundamental form of computation [8].

Furthermore, single-celled organisms, such as the slime mold *Physarum polycephalum* and certain ciliates, have demonstrated the simplest form of learning: habituation [9]. This process, where the response to a repeated, non-threatening stimulus decreases over time, suggests a basic, conserved mechanism for adaptive information processing that underpins more complex cognitive functions.

THE THEORETICAL FRAMEWORK: MICROBIAL CONSCIOUSNESS

The convergence of microbial sensory and cognitive-like capabilities including density sensing, collective decision-making, information integration, and cellular memory forms the conceptual foundation of the Cellular Basis of Consciousness (CBC) hypothesis [2]. According to this framework, consciousness is not viewed as a binary or exclusively neural phenomenon, but rather as a graded biological property emerging from the capacity of living systems to sense, evaluate, and respond adaptively to their environment. This perspective directly challenges anthropocentric models of consciousness and supports the idea that awareness may be a fundamental attribute of life itself [2].

From a theoretical standpoint, microbial consciousness aligns closely with modern views in

systems biology and biosemiotics, where living cells are regarded as information-processing agents rather than passive biochemical reactors. Bacterial cells continuously acquire signals from their environment, assign biological meaning to these signals, and generate context-dependent responses through complex regulatory networks [10]. Such semiotic behavior where signals function as signs interpreted by the cell supports the notion that cognition-like processes can emerge without nervous systems [11].

Importantly, the CBC framework emphasizes that bacterial sensory indicators are not mere molecular switches, but dynamic components of distributed decision-making architectures. Signal transduction pathways, transcriptional feedback loops, and metabolic networks together enable bacteria to compare current conditions with prior states, predict environmental trends, and select optimal behavioral strategies [1,12]. These properties fulfill key functional criteria often associated with minimal cognition, including perception, valuation, memory, and action selection.

Recent theoretical models further reinforce this view by describing bacterial populations as collective cognitive systems. Within biofilms and structured communities, information is shared, stored, and processed at the population level, resulting in emergent behaviors that cannot be reduced to individual cells alone [7,13]. This collective cognition supports adaptive resilience and problem-solving capabilities, such as antibiotic tolerance and environmental niche construction, which parallel higher-level cognitive phenomena in multicellular organisms.

From an evolutionary perspective, microbial consciousness offers a unifying framework for understanding the continuity of cognition across life forms. Rather than emerging abruptly with complex nervous systems, cognitive and awareness-related properties may have gradually evolved from primitive information-processing mechanisms already present in early unicellular life [14]. In this sense, microbial consciousness represents the most basal expression of awareness, providing a conceptual bridge between molecular biology,

evolutionary theory, and consciousness studies.

Table 2. Theoretical pillars supporting the microbial consciousness framework

Theoretical Component	Biological Basis in Microbes	Cognitive-like Interpretation	Relevance to the Cellular Basis of Consciousness Hypothesis
Environmental Sensing	Detection of nutrients, toxins, temperature, pH, host signals via receptors and two-component systems	Perception of external and internal states	Establishes sensation as the first layer of cellular awareness
Signal Integration	Convergence of multiple sensory inputs through signal transduction networks and regulatory feedback loops	Evaluation and prioritization of competing information	Demonstrates decision-making without a nervous system
Quorum Sensing (QS)	Population-density sensing via autoinducers leading to coordinated gene expression	Collective cognition and social awareness	Supports the idea of distributed, non-centralized consciousness
Cellular Memory	Persistence of proteins, metabolites, and epigenetic states after stimulus removal	Short-term and long-term memory	Enables history-dependent behavior, a core cognitive property
Generational Memory	Heritable transmission of adaptive states across bacterial generations	Learning beyond the individual lifespan	Extends cognition across time, reinforcing evolutionary continuity
Collective Memory	Biofilm-mediated storage of environmental information	Externalized and shared memory	Aligns with the CBC view of consciousness as a system-level property
Adaptive Decision-Making	Context-dependent regulation of motility, virulence, and metabolism	Goal-directed behavior	Challenges purely reflexive interpretations of microbial action
Biosemiotic Processing	Interpretation of chemical signals as meaningful signs	Symbolic information processing	Frames bacteria as semiotic agents, not biochemical automata
Evolutionary Continuity	Conservation of information-processing mechanisms across life forms	Gradual emergence of cognition	Positions microbial consciousness as the basal form of awareness

CONCLUSION

The evidence supporting the hypothesis of microbial consciousness is compelling, rooted in the sophisticated sensory and behavioral repertoire of bacteria. The ability to use quorum sensing to gauge colony count, the presence of cellular and collective memory, and the capacity for complex information processing and learning all point to a level of cognitive function far beyond simple reflex. While the term consciousness remains a subject of intense debate, the study of these microbial sensory indicators provides a crucial, bottom-up perspective on the origins of intelligence and awareness, confirming that bacteria are indeed highly complex, social, and adaptive organisms.

REFERENCES

1. Lyon P. The cognitive cell: bacterial behavior reconsidered. *Front Microbiol.* 2015;6:264.
2. Trewavas AJ, Baluška F. The ubiquity of consciousness, cognition and intelligence in life. *EMBO Rep.* 2011;12:1221-5.
3. Rutherford ST, Bassler BL. Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. *Cold Spring Harb Perspect Med.* 2012;2:a012427.
4. Braun CMJ. The biology of consciousness from the bottom up. *Consci Cogn.* 2018;61:1-10.
5. Fitch WT. Information and the single cell. *Trends Cogn Sci.* 2021;25:1043-1054.
6. Bhattacharyya S, et al. A heritable iron memory enables decision-making in *Escherichia coli* swarming motility. *Proc Natl*

- Acad Sci U S A. 2023;120: 120.
- 7. Gajrani S, Ye X, Ratzke C. Environment-mediated interactions cause an externalized and collective memory in bacteria. *ISME J.* 2025;19:173.
 - 8. Nesin SM, Chandrankunnel M. The need for a new perspective on decision-making in bacteria. *Commun Integr Biol.* 2025;18:2463926.
 - 9. Dussutour A, Latty T. Learning in single cell organisms. *Curr Opin Behav Sci.* 2021;38:101-106.
 - 10. Baluška F, Levin M. On having no head: cognition throughout biological systems. *Front Psychol.* 2016;7:902.
 - 11. Kull K, Deacon T, Emmeche C, Hoffmeyer J, Stjernfelt F. Theses on biosemiotics: Prolegomena to a theoretical biology. *Biol Theory.* 2009;4:167–173.
 - 12. Mitchell A, Lim W. Cellular perception and misperception: internal models for decision-making shaped by evolutionary experience. *BioEssays.* 2016;38:845–849.
 - 13. Shapiro JA. Thinking about bacterial populations as multicellular organisms. *Annu Rev Microbiol.* 1998;52:81–104.
 - 14. Ginsburg S, Jablonka E. The evolution of the sensitive soul: learning and the origins of consciousness. MIT Press; 2019;23:876.

To site this article: Alhusayni, AA. and Al-Khikani, FH. Comprehensive Review: Sensory Indicators and the Hypothesis of Microbial Consciousness. *Infinity J. Med. Innov.* 2025; 1: 81-85.